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Abstract-Expressions are derived for entropy generation due to heat and mass transfer processes in a 
multi-component fluid. These show that the entropy generation due to the coupling effect between heat 
and mass transfer has been calculated incorrectly in recent publications. This contribution is zero unless 
the thermal diffusion and diffusion-therm0 effects are explicitly included in the theory. Restrictions on the 
applicability of expressions used recently for entropy generation due to mass transfer are identified. An 
ideal binary fluid is used to illustrate the analysis in the limit where the pressure gradient is small in the 

direction of the diffusion flux. 

1. INTRODUCTION 

THE LOSS due to processes irreversibility within indi- 
vidual system components is an important parameter 
in process system design [l]. This loss can be cal- 
culated using second law analysis, either from the 
rate of entropy generation within the relevant control 
volume, or from the unbalanced rate of input of 
exergy. The entropy approach is especially useful for 
the purpose of system optimization because the losses 
contributed by distinguishable sub-processes can be 
separately evaluated [I]. 

Much of the interest in second law optimization has 
focused on entropy generation due to heat transfer 
and fluid friction, and the trade-off between these 
irreversibilities, as design parameters are changed [2]. 
Recently this analysis has been extended to include 
mass transfer processes [3-71. In particular San et al. 
[5, 63 investigated entropy generation in fluid flow 
in a two-dimensional channel, taking into account 
isothermal mass transfer as well as combined heat and 
mass transfer. The analysis of San et al. has been 
reviewed subsequently by Bejan [l, 81. Poulikakos 
and Johnson [7] also examined entropy generation in 
combined heat and mass transfer. 

The equations developed by San et al. [5, 61 are 
based on expressions for the rate of entropy gen- 
eration per unit volume in a Newtonian fluid given by 
Hirschfelder et al. [9]. By considering the fluid to be 
a binary mixture of two ideal gases, San et al. obtained 

a simplified expression for the molar chemical poten- 
tial of the components. The mass diffusion rate was 
assumed to be small and the analysis also invoked 
other approximations. 

We note that San et al. [5, 61 and Bejan [l, 81, 
indicated that there is a significant entropy generation 
term involving products of the type VT* Vck. This 
term was attributed to the coupling between sim- 
ultaneous heat and mass transfer processes. Here we 
show that this term is absent from the entropy gen- 

eration equation, unless the analysis explicitly 
accounts for the thermal diffusion effect and diffusion- 
therm0 effect. These effects were not included in the 
discussion in refs. [I, 5, 6, 81. Moreover, when these 
effects are included, we find that the coupling term is 
typically very small compared to the terms obtained 
by San et al. [5, 61 and Bejan [I, 81. In addition we 
consider expressions given by these authors for the 
rate of entropy generation due to mass transfer alone 
in a binary mixture. We show that expressions involv- 
ing terms of the type (Vc,)’ are only applicable when 
the binary system is very dilute, the molar con- 
centration is essentially uniform and the pressure 
gradient in the direction of the diffusion flux is 
negligible. 

2. ENTROPY GENERATION 

In a recent paper [lo] we obtained a general exergy 
balance equation which is applicable to a fluid mixture 
subject to heat conduction, mass diffusion, fluid fric- 
tion and chemical reactions. The equation relates the 
rate of entropy production per unit volume, 0, to the 
non-flow exergy function, bT,,, the steady flow exergy 
function, bn, and the steady flow exergy flux, Jbs 

;(pb,)+V-(pb,,v+J,,) = -Toa. (1) 

This equation, which is an example of the Gouy- 
Stodola theorem [2], provides a general link between 
the exergy formulation of second law analysis and the 
entropy generation method. The volumetric rate of 
entropy generation is expressed as the sum of four 
process contributions 

. (2) 
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NOMENCLATURE 

A, B species label in binary mixture f time [s] 
b specific exergy function [J kg- ‘1 T temperature [K] 

hk partial specific exergy function for species I)~ partial specific volume of species k 

k [J kg- I] [m’ kg-‘] 
C, molar concentration for species k 1;; partial molar volume of species k 

[in01 rn-- ‘1 [m” kg’] 
&j, 9km diffusion coefficient [m’ s- ‘1 V barycentric (mass average) velocity of 
D’? D” thermal diffusion coeffcient, Dufour mixture [m s-- ‘] 

coefficient [m’ s- ’ Km’] v* molar average velocity of mixture [m s ‘1 
F external force per unit mass [N kg-- ‘1 vg velocity for species k [m s. ‘1 
hk partial specific enthalpy for species k .X& mole fraction for species k in the mixture. 

1J kg-‘1 
Jk mass flux for species k relative to Greek symbols 

barycentric velocity [kg m- * s-- ‘] Pk specific chemical potential for species k 

3, molar flux for species k relative to [J kg- “I 
barycentric velocity [mol mP2 s-’ ‘1 i?i, 

5; 
molar chemical potential for species h- 

molar flux for species k relative to molar [J mol- ‘1 
average velocity [mol m - * s ‘1 Vk, specific stoichiometric coefficient for 

J, internal energy (heat) flux [J m- ’ s ‘1 species k in reaction j 

J; heat flux, excluding enthalpy di~usion P mass density for mixture [kg m _ ‘1 
currents [J m- ’ se- ‘] Pk mass concentration of species k [kg rn-- ‘1 

4 rate per unit volume for the jth chemicaf G rate of entropy generation per unit 
reaction [kg s- ’ m _ ‘] voiume [J K ’ s- i m” ‘1 

k thermal conductivity [J m- ’ s ’ K- ‘1 w mass fraction. 
K number of components in mixture 

Mk molecular weight of species k [kg mol‘. ‘1 Subscripts 
P thermodynamic pressure [N m-‘1 d diffusion 
P’ viscous part of pressure tensor [N m- ‘] _j ,jth chemical reaction 
R number of chemical reactions in mixture k kth species of mixture 
R molar gas constant [J mol- ’ K- ‘1 n non-flow 
s specific entropy [J kg- ’ K- ‘1 0 value at the environmental dead state 
Sk partial specific entropy of species k 4 heat transfer 

[J kg--’ K-‘1 s steady flow 
4 partial molar entropy of species k T derivative at constant temperature 

[Jmol- R-‘1 Tn, 73 total non-flow, total steady flow. 

The terms on the ~ght-hand side represent, respec- 
tively, the irreversibilities due to heat transfer, mass 
transfer, viscous flow and chemical reactions [lO_IZ]. 
In this paper we restrict our attention to the first two 
terms only and we assume also that external body 
forces, Fkr can be neglected. Thus, denoting the heat 
and mass transfer terms by eqd, and setting F, = 0, we 
have 

Now the energy flux, J,, is the sum of the heat flux, 
J;, and the enthaipy flux due to diffusion 

J, = J;+ 5 Jkhk (4) 
ki t 

where hk is the partial specific enthalpy [l&12]. Sub- 
stituting this expression in equation (3), we may 
express the heat and mass transfer terms as follows : 

where 

and 

6& = - + i ((J&)VT+Jt ‘VP,). (7) 
k-l 

Here So is the partial specific entropy and we have 
used the relation, pk = hk - Ts,. 

For comparative purposes, it is useful to transform 
from the mass Aux, Jk, and the partial specific quan- 
tities, s,, hk, _ukr to the corresponding molar flux and 
partial molar quantities. The equation of Hirschfelder 
et al. [9], which is utilized in refs. [l, $61, is expressed 
in these terms. For later reference we define 
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density P=fPt (8) 
k= I 

mass fraction wk = PkiP (9) 
K 

barycentric velocity v = c u&v, (10) 
k= 1 

molar concentration c, = pk.Mk. (11) 

Then the partial molar entropy, molar chemical 
potential and the molar diffusion flux are, respectively 

(12) 

(13) 

1 
3, = -Jk = c&k-v). 

Mk 
(14) 

Substituting into equation (7), we obtain the rate of 
entropy generation per unit volume, due to diffusion 

We note that the molar diffusion flux Jk is measured 
relative to the barycentric, or mass average, velocity 
[l l-141. However, under certain conditions the bary- 
centric velocity in equation (15) may be replaced by 
an arbitrary velocity. These requirements follow from 
a theorem due to Prigogine [ 151. 

3. PRIGOGINE THEOREM 

The Prigogine theorem, which is summarized by 
De Groot and Mazur [I 11, follows from the Gibbs- 
Duhem relation for a multi-component system. This 
latter relation can be expressed in terms of partial 
molar quantities as 

,$, c,{&VT+V&} = VP. (16) 

Hence under the condition of mechanical equili- 
brium, when VP = 0 and F, = 0, equation (15) can be 
rewritten as 

0; = -f i c&k-v,)‘(&VT+V,&) (17) 
k- I 

where v, is an arbitrary velocity. In this situation we 
may therefore use J$, instead of Sk, in equation (15). 
Here $’ is the molar diffusion flux measured relative 
to the molar average velocity, v* 

J,$ = c&k-v*) (18) 

where the molar average velocity is 
K 

v* = c XkVk (19) 
k= 1 

the mole fraction, xk, is defined as 

x, = Ck/C 

and c, the total molar concentration, is 

(20) 

K 

c= c Ck. 

k= 1 

Then, under the condition that VP can be neglected, 
equation (15) may be expressed as 

a& = - f 5 { (If,*~k)VT-~J,*V/-ik}. 
k- 1 

(22) 

We note that equation (2) together with equations 
(7) and (15) correspond to the expression for the 
volumetric rate of entropy production used by San et 

al. [5, 61, and also by Bejan [l, 81. Equation (22) is 
also of the same form. The term p/T@ in equation 
(115) of Bejan [l] corresponds to (- 1 /T’)P’ : Vv which 
represent viscous dissipation in equation (2). In 
addition we note the following equations for the sum 
of the mass fluxes which are useful in applying equa- 
tions (7), (15) and (22) : 

5 Jk=o 
k= L 

(23) 

,$, 3, = c(v* -v) (24) 

k$,J:=o. (25) 

These relations show that only K- 1 of the K diffusion 
fluxes are independent. Hence we cannot say that 
only one species in a system diffuses when we use 
the concept of mass diffusion fluxes relative to some 
average velocity. 

4. DERIVATIVE EXPRESSIONS 

The natural thermodynamic variables for the 
chemical potential (partial specific Gibbs function), 
pk, are T, P and the K- 1 independent mass fractions 
wj of the K species ; for pk the natural variables are T, 
P and the independent mole fractions, xi. Thus the 
gradients of pk and & are [ 161 

Vpk = -S,VT+U,VP+ 5 &Vi& (26) 
i= I i+k 

or 

V/ik = -&VT+&VP+ 5 &V& (27) 
i= 1 i+k 

where the partial specific quantities are related to the 
derivatives of the chemical potential by 

and 

(28) 

(29) 

(30) 
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Similar relations apply to the partial molar derivatives The expression for the mass diffusion flux, J,. in II 
and substituting these into equations (7) and (15) multi-component system can also be expressed as :I 
yields sum of contributions [13, 141 

J, = 51“ i_ J:” + J;“’ i,J:” (39) 

where J:‘! is the ordinary diffusion Rux attributable 
to the concentration gradients of the species present 
in the mixture, Jp’ denotes diffusion due to pressure 
gradients, Jj’.) represents forced diffusion due to an 

We see that the term involving products of mass fluxes 
external force (this vanishes identically if gravity is 

and the temperature gradient in equations (7), (15) 
the only external field [14] which we assume applies 

and (22) has cancelled out with the corresponding 
here), Ji7.’ is the contribution due to thermal diffusion 

products arising in VI, and VP,. Thus the temperature 
(Soret effect) caused by the temperature gradient. 

gradient mass flux products in these equations vanish 
The Dufour and Soret effects rcprescnt coupling 

and they do not represent any contribution to the 
between heat and mass transfer, but for most common 

entropy generation. This result disagrees with the 
situations these effects, as well as the pressure diffusion 

interpretation given in refs. [I, 5, 6, 81 in which the 
term and the forced diffusion term, can be neglected 

product term is attributed to a coupling effect between 
[I 3, l4]. We shall make this assumption in this section. 

mass diffusion and heat flow. 
in addition we assume that the pressure gradient and 

The absence of the temperature gradient in the 
external forces arc negligible in evaluating the 

thermodynamic force term corresponding to the flux 
diffusion entropy generation rate, so that Prigogine’s 

terms Jn and 3, in equations (31) and f32) can be seen 
theorem is applicable. 

explicitly by considering the gradient of the chemical 
Under these restrictions, the molar di&sion flux 

potential evaluated at constant temperature. From 
J:, for a component k in a fluid mixture [13], can be 

equation (26) 
expressed in terms of the effective binary diffusivity. 
9 i,” as 

(V/l,)7 = Ll,vP+ i pgvrrl, (33) J,* = - (~Y,,,vs,. 140) 
/- I ,fh 

and hence, equation (31) becomes 

o:, = - t_ i J, . (V/.L~)~. 
L _ 1 

In addition we shall use the following expression for 
the molar chemical potential [ i6f : 

(34) 
& = ,i$(T,P)+RTln (;.ksfi) (411 

where yc is the activity coet’hcient. For simplicity we 
A similar form applies to the molar quantities, 3, consider the mixture to be an idea1 solution, so :A = 1. 
and ,i&. Furthermore, under conditions of mechanical Then we have 
equilibrium, we see from the Prigogine theorem that 
we may use J,* instead of 3, in equation (32). Since (42j 
under this assumption we set VP = 0, we obtain the 
required results and it then follows from equations (35) and (40) that 

(35) 
A Pkrn 

a:, = Rc c (43) 
1 

, .,;, (V.q ) l. 

= --; g 3: { 2 
i 1 i-i ir h 

,;,vx.). (36) 
Alternatively, we can use equation (95) to first rewrite 
equation (35) and then apply equation (42) 

5. FOURIER AND FICK LAWS 

For mixtures, the heat flux J; consists of the con- zzz 

ductive heat flux JF1 caused by the temperature gradi- 
Rc c J$,,Vs,, ;_,;c 

ent and the heat flux JF’ due to the Dufour, or diffu- 
sion-therm0 effect, which arises from concentration 

If, further, the total molar concentration is constant, 

and pressure gradients. While this second term is gen- 
the derivatives can be re-expressed in terms of c1 

erally believed to be negligible [I 3, 141, we include it 
instead of x,. We then have the volumetric rate of 

here for completeness 
entropy generation, from equations (2), (5), (6), (38) 
and (43) 

J' = J'"'+J“' 
Y 9 4 (37) 

where JF) is given by the Fourier law 

J”’ z - kVT. 0 (381 (45) 
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The principal difference between this equation and the 
expressions used by San et al. [5, 61 and Bejan [l, 81 
is that here there is no coupling term of the type 
VT*Vck. The reasons are discussed above in Section 
4, In addition we have kept the sum over components, 
k, explicitly. Below we show that, except in the limiting 
Case of a very dilute binary system, all terms should 
be retained in the diffusion sum. Again we emphasize 
that the application of this equation is restricted to 
situations in which the molar con~n~ation, c, is uni- 
form, and in which VP can be neglected in the direc- 
tion of mass transfer. 

In general, the mass diffusion flux .Ik can also be 
obtained from the generalized Fick’s law [13, 141 as 
follows : 

or 

Here rt,, are multi-component 
having the properties [13, 141 

Dkk = 0 

and 
K 

diffusion coefficients 

(48) 

,C, (~~~jD~j_M~MiD~j) = 0. (49) 

To illustrate, we consider the molar form of equation 
(34) and substitute for J, using equation (47) 

(50) 

where the gradients may be evaluated using equation 

(27). 
In the special case of an ideal solution, and 

assuming also Jk * VP = 0, we may use equation (42) 
to calculate the gradients of the molar chemical poten- 
tial in equation (50) 

Now further restrict the system to just two 
components, A and B. We denote the binary diffusion 
coefficient as gAB = L&. In this case VxA + Vx, = 0 
and we can simplify the summations 

or, if c is constant 

This equation represents the binary mixture form for 

the diffusion term in equation (45). The comments 
made in relation to that equation apply here also. 

6. HEAT-MASS TRANSFER COUPLING 

The phenomena which arise in a multi-component 
mixture when both the concentrations and tem- 
perature are nonuniform are analysed in detail by De 
Groot and Mazur [l I]. Here we illustrate the appli- 
cation of the entropy production equation in an ideal 
binary fluid in order to examine the role of coupling 
between thermal and mass diffusion in second law 
optimization procedures. 

For our purposes here we assume that viscous 
phenomena can be neglected, that there are no exter- 
nal forces present and that the pressure is uniform. 
We also neglect convective phenomena and we assume 
that concentration gradients are small enough that 
the density, p, is uniform. We label the two 
components, A and B. In this example we choose to 
use the mass, rather than the molar representation, 
because the link with the equations in ref. [ 1 I] is more 
direct. Then proceeding from equations (2), (5), (6), 
f33) and (34), the volumetric rate of entropy pro- 
duction is 

Now because uA +ces = 1 then VW, = -VwA and 
&a = -&&,. In addition the Gibbs-Duhem relation 
(see equation (16)), applied at constant Tand P, yields 

(0~ d!JA +@B d,&z,p = 0 (55) 

and hence, using equation (26) 

OA &B = OB &A. (561 

It follows, from equation (54) that 

1 1 
c= -T~J;*VT-wTPWAAJA.VWA. (57) 

B 

Here ~2~ can be evaluated, assuming we have an ideal 
fluid, by using equation (42) together with equations 

(9), (11) and (13) 

When we include the thermal diffusion effect and the 
diffusion-therm0 effect, the heat flux, J;, and the mass 
flux, JA, can be expressed in the form [i l] 

J; = -kVT-p~~~~~T~~V~~ (591 

JA = -~w~w@VT+ ~TMAMa9AB~r,p~AV~A. 

(601 



1172 C. G. CARKINGTON and Z. F. SUN 

When the thermal diffusion effect and diffusion- 
therm0 effect are important, these two equations 
should be used in the energy and mass balance equa- 
tions in order to obtain the temperature and con- 
centration distributions. Now from the Onsager 

relations [ll], D’, the thermal diffusion coefficient, 
and D”, the Dufour coefficient, are equal. Here, also, 
the ordinary diffusion flux contribution in equation 
(60) derives from equation (46). It then follows from 

equations (56) to (60) 

a = -$(VT)‘l g (VT). (Vu,) 
A R 

Alternatively B can be expressed in terms of molar 

fractions using Vo, = M,w,cVx,/.x,p. In the case 

where c is constant we obtain 

These three terms correspond, respectively, to the heat 
transfer irreversibility, the coupling between heat and 
mass transfer, and the irreversibility due to mass 
diffusion alone. Generally the ratio of D’/LSA,, called 
the Soret coefficient, is of the order of lo- ‘-lo-~ 5 K ’ 
in gases and liquids [l 11. Thus when the temperature 
gradient is not steep, we can usually neglect the 
entropy term due to the Soret and Dufour effects 
compared with that due to direct mass diffusion. We 
note that the ratio of the heat-mass transfer coupling 
term to the direct diffusion term is not in accordance 

with the equation suggested by Bejan [l, 81. In the 
limit cA -+ 0, cR + c. the order of magnitude of this 
ratio is given by 

heat-mass transfer coupling irreversibility 

mass diffusion irreversibility 

D’VT 

- al3mlh) 

and this will generally be much smaller than the esti- 
mate based on equation (123) of ref. [l]. 

7. CONCLUSIONS 

We have derived expressions for the local rate of 
entropy generation in a fluid mixture subject to heat 
and mass transfer. The analysis is based on the theory 

of non-equilibrium thermodynamics. The expressions 
have been compared with those previously obtained 
by San et al. [5, 61 and Bejan [l, 81 and we have 
identified a number of points which have required 
correction or clarification. In particular the term 
identified by some previous authors as a mass 
diffusion-heat transfer coupling effect does not exist 
in the present theory. In the entropy generation equa- 

tion, this difference arises in the way we have evaluated 
VpLk. The effect of this modification on subsequent 
equations in ref. [6] is that the cross product term in 
its present form, involving products of the heat and 
mass transfer rates, should be deleted from equations 

(5), (14))(17) and (19) of that reference. This change 
is also required in ref. [ 11, equation (122), and ref. [8], 
equations (11.171) and (11.173). 

The equations for entropy generation due to mass 

diffusion are given in both the specific and partial 

molar forms. They are simplified by considering an 
ideal binary fluid as an example, Additional sim- 

plifications are obtained by assuming that the pressure 

gradient is negligible in the direction of the diffusion 
flux and that the total concentration is spatially 
uniform. We show that, in general, all terms should 

be retained in the sum over dilfusion currents. WC 
also lind that our diffusion terms reduce to those 

obtained in refs. [l, 5, 6, 81 only in the limit where the 
molar concentration of one species is much greater 
than the other. 

We have obtained an expression for the entropy 

generation rate due to mass diffusionheat transfer 
coupling. This term involves the thermal diffusion 
coefficient, D’, rather than the mass diffusivity. We 

show that the magnitude of this contribution to the 

entropy generation rate is likely to be small compared 
with the cross-effect term previously presented in refs. 

[l, 5. 6. 81. For instance, the cross-effect determined 
by San et al. [6], in a numerical example of heat and 
mass transfer in laminar flow in a two-dimensional 

duct, influenced the total rate of entropy production 
by approximately 3%. In that example, therefore, the 
expression for the cross-effect obtained here is likely 
to be negligible. 
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ANALYSE SELON LA SECONDE LO1 DES PHENOMENES COUPLES DE TRANSFER7 
DE CHALEUR ET DE MASSE 

Resume-On derive des expressions pour la creation d’entropie due aux mt?canismes de transfert de chaleur 
et de masse darts un Auide a plusieurs composants. Elles montrent que la creation d’entropie a ete calculee 
de faGon incorrecte dans des publications recentes. Cette ~on~b~tion est nulle bien que soient inclus les 
effets de la diffusion thermique. On identifie des restrictions $ l’applicabiliti des expressions utilisees 
recemment pour la creation d’entropie due au transfert de masse. Un fluide binaire ideal est consider& pour 
illustrer l’analyse dans la limite ou le gradient de pression est faible dans la direction du flux diffusionnel. 

ANALYSE DES GEKOPPELTEN WARME- UND STOFFUBERGANGS MIT HILFE DER 
E~ROPIE 

Z~~menfa~ung-F~ die Entropieerz~ugung bei Vorgangen mit WLme- und Stofftransport in Mehr: 
stoff-Fluiden werden Glei~hungen abgeleitet. Diese zeigen, dag die Entropieerzeugung bei gekoppeItem 
W&me- und Stofftransport in den kiirzlich ver~ffentlichten Arbeiten aufgrund des Kopplungseffektes 
falsch berechnet wurde. Dieser Beitrag tritt nur dann in Erscheinung, wenn die thermische Diffusion und 
die Kopplungseffekte expiizit in die theoretische Beschre~bung einbezogen werden. Die Einschr~nkungen 
bei der Anwendbarkeit der kihzlich ver~~entlichten Beziehungen fiir die Entropieerzeugung bei Stoff- 
transport werden dargelegt. Ein ideaies Zweistoffgemisch wird verwendet, urn die Analyse fur den Fall zu 

veranschaulich~n, bei dem der ~ruckgradient in Richtung des ~iffusionss~oms klein ist. 

HPMMEHEHHE BTOPOI-0 3AKOHA TEPMOAHHAMMKM mII AHAJIH3A XBJIEHHH 
COBMECTHOrO TEHJ-IO- Ii MACCO~EPEH~A 


